
       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
 

 

 
 

 

Deliverable D5.1 
  
 

HOPE 
Grant agreement no: 250549 

Heritage of the People’s Europe 
 

Repository Infrastructure and Detailed Design 
 

 
•Deliverable number: D5.1 
•Status: FINAL 

•Authors: Jerry de Vries 
  

•Delivery Date: 01-04-2011 
•Dissemination level: Public 

 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
1 

Version history 

 

Date Changes Version Name 

25-02-2011 First draft 0.1 Jerry de Vries 

01-03-2011 Schemas added 0.2 Jerry de Vries 

02-03-2011 Technical description of 
components added 

0.3 Jerry de Vries 

09-03-2011 UML diagrams added, design 
choices updated 

0.4 Jerry de Vries 

11-03-2011 Updated design choices 0.5 Jerry de Vries 

14-03-2011 Added conclusion 0.6 Jerry de Vries 

24-03-2011 Changes made based on the first 

reviews 

0.7 Jerry de Vries 

25-03-2011 Changes made based on the last 
reviews. Updated appendix in 
separate document. 

0.8 Jerry de Vries 

25-03-2011 Added PPSS as tool and last 

check up 

1.0 Jerry de Vries 

28-03-2011 Described PID service in 

separate chapter 

1.1 Jerry de Vries 

 

 
Contributors 

 
Institution Name 
IISG Gordan Cupac 

Mario Mieldijk 
Sjoerd Siebinga 

Titia van der Werf 
Lucien van Wouw 

CNR-ISTI Alessia Bardi 

Paolo Manghi 
Franco Zoppi 

 
  

 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
2 

Table of contents 
Introduction .............................................................................................. 4 

1. SOR Detailed design ........................................................................... 7 

1.1 SOR components............................................................................. 8 

1.1.1 Submission API ......................................................................... 8 

1.1.2 Dissemination API ...................................................................... 8 

1.1.3 Administration API ..................................................................... 8 

1.1.4 IAA: Identification, Authentication, Authorization ........................... 8 

1.1.5 Ingest platform ......................................................................... 9 

1.1.6 Administration platform .............................................................. 9 

1.1.7 Convert platform ....................................................................... 9 

1.1.8 Delivery platform ....................................................................... 9 

1.1.9 Technical Metadata storage ....................................................... 10 

1.1.10 Digital Object Depot .............................................................. 10 

1.1.11 Derivative storage ................................................................ 10 

1.1.12 Cluster manager ................................................................... 10 

1.1.13 Processing Queue Manager .................................................... 11 

1.1.14 Staging Area ........................................................................ 11 

2. Persistent Identifier Service ............................................................... 12 

2.1 High Level Design PID Service ........................................................ 12 

2.2 Low Level Design PID Service ......................................................... 12 

3. Low level design .............................................................................. 13 

3.1 Infrastructure ............................................................................... 13 

3.2 Tools and software ........................................................................ 17 

3.2.1 Software................................................................................. 17 

3.2.2 Tools ...................................................................................... 17 

3.3 Design Choices ............................................................................. 19 

3.3.1 Technical solutions ................................................................... 19 

3.4 Implementation ............................................................................ 24 

3.4.1 API Servers ............................................................................. 24 

3.4.2 IAA: Identification, Authentication, Authorization servers ............. 25 

3.4.3 Platform servers ...................................................................... 25 

3.4.4 Storage .................................................................................. 27 

3.4.5 Staging Area ........................................................................... 29 

3.5 Low level design dependencies........................................................ 30 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
3 

3.5.1 Virtual Servers ........................................................................ 30 

3.5.2 Converter Environment ............................................................ 32 

Conclusion ............................................................................................... 33 

Appendix A - Example HOPE Persistent Identifier Web service interface .......... 34 

Appendix B – Low Level Design .................................................................. 34 

Appendix C – Organizations providing parts of the infrastructure of the SOR .... 34 

Appendix D – Technical Glossary SOR ......................................................... 34 

 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
4 

Introduction 
 

The HOPE system consists of different parts. These parts are the local systems of 
Content Providers, the HOPE Aggregator, the HOPE PID service, the HOPE 
Shared Object repository (henceforth SOR) and the discovery services. 

Figure 1 shows a diagram of the component parts of the HOPE system and of the 
data-flows can be found. This diagram is derived from the high level design1. 

Figure 1 shows a proposed updated version of the diagram. In the hope 
consortium is agreed that the HOPE SOR won‟t provide the upload to social sites. 
Therefore it is left out and not mentioned further in this document. 

 
 

Digital Object

Local Implementation WP3

Content Provider

Archival/
Library 
system

PID

Local 
Object 

Repository

Content Provider

Digital 
Object

Aggregator
WP4

Shared Object 
Repositroy

WP5

Users

Social sites 
(youtube, 

flickr)

PID

Archival/
Library 
system

Europeana

Social sites

Google

IALHI

Institutiona
l website

Public 
website

OAI-PMH
PULL

Metadata
Push

SRW/CQL
Push/Pull

SRW/CQL
Pull

SRW/CQL
Pull

SRW/CQL
Pull

P
u

b
lic

 c
o

n
te

n
t

Hope compliant 
metadata

D
ig

it
al

 O
b

je
ct

HOPE Persistent
Identifier service

 
Figure 1 High level design diagram 

                                       
1 See T2.1 HighLevelDesign v0.1 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
5 

This document defines the detailed design, infrastructure and technical 

architecture of the Shared Object Repository (SOR). The input for this document 
comes from: The High Level Design WP2 (T2.1), gathered requirements from the 

Content Providers (henceforth CP) in the “HOPE consortium” and the milestone 
5.1 document2. This document also contains the design and requirements of the 
HOPE Persistent Identifier (PID) service.  

 
Requirements SOR system 

 
Derived from the Milestone 5.1 document2 we can see that the SOR basically 
consists of three parts: 1) Ingest (which is also storage), 2) Delivery and 3) 

Administration interface.  Figure 2 shows a diagrammatic representation of the 
SOR. 

 
Before the discovery to delivery process 
(d2d) can take place, digital objects should 

be ingested into the SOR.  
 

As digital masters are usually large files, 
they are not fit for large scale online 
delivery via the web, so by default they 

have a restricted access status and the 
SOR creates smaller size derivatives out of 

them, for delivery. It is the Content 
Provider (CP) who sets the policies and 
rules for access to the digital object and its 

derivatives. 
  

To see how the three basic processes of 
the SOR can work, we have to describe the 
SOR and the components of the SOR in 

more detail. This document zooms in on 
the SOR and describes all of its 

components and infrastructure of these 
components.  

 
 
 

 
 
 

Figure 2 SOR basic 

 
  

                                       
2 Milestone document M5.1 - Repository workflow and Requirements specification 

SOR

Delivery

Ingest

A
D
M
I
N

I
N
T
E
R
F
A
C
E

Storage



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
6 

Requirements from the High Level Design 

 
 Use of Persistent Identifier System 

 Scalable for > 500Tbytes 

 Scalability for Performance (down- or up scaling) 

 High availability 

 Cost-effective 

 Low Maintenance 

 Object oriented architecture 

 Simple, clean and open design 

 Must be extendable for future extensions (preservation, multiple copies, 

caching derivatives) 

 Easy to manage  

 It is preferable that the content providers can easily setup there local SOR 

with the components that are used in de SOR 

 All software must be distributable 

 Safe (secure) storage 

 

Requirements from the Content Providers 
 

 All the requirements and specification for the SOR are collected and 

updated in the Milestone document M5.1 - Repository workflow and 
Requirements specification 

 
 

Chapter overview 
 
Chapter 1: Describes the high level design of the SOR. In chapter 1.1 gives an 

explanation of each component of the SOR.  
Chapter 2: Describes the High Level and Low Level design of the PID service 

Chapter 3: Describes the low level design of the SOR. Chapter 3.1 describes the 
infrastructure between the components of the SOR. Chapter 3.2 
describes the tools and software that will be used to implement the 

components of the SOR. In chapter 3.3 the design choices are 
highlighted. Chapter 3.4 describes the technical implementation and 

chapter 3.5 describes the low level design dependencies.  
 
 

 
 

 
 
 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
7 

1. SOR Detailed design 
 

This section describes the detailed design for the SOR. The SOR plays a critical 
role in the d2d process to make access to the digital masters and their 
derivatives more transparent to the user. In the future, the SOR can also play a 

critical role in the digital preservation of the digital masters. In Figure 3 a 
diagrammatic representation of the Shared Object Repository can be found. 

 
 

Shared Object Repository
WP5

Staging Area

Upload area Imprter
Hope Persistent 
Identifier service

D
issem

in
atio

n
 A

P
I

IAA
Identification

Authentication
Authorization

Ingest 
Platform

Digital Depot

Delivery platform

Jump-off
Different
formats

Technical 
metadata

Convert 
platform

Derivatives 
Storage

Submission API

Store jump
Off link

Administration
Platform

Authentication

A
d

m
in

istratio
n

 A
P

I

- 3rd party 
webstores
- Local repros
- etc

Digital object to Users
* jump-off page when only PID
is given
* direct access to the digital
object when additional size and
format parameters are given

Institutional Websites,
mobile clients, etc

Statistics

Cluster 
manager

Processing 
Queue

Manager

User / Role
Manager

Digital Master upload from CP
With Persistent Identifier

 
Figure 3 SOR detailed design 

 

Figure 3 shows the components of the SOR. The diagram also shows the 

communication between the components. The following chapter describes all 

these components in detail.  

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
8 

1.1 SOR components 
 
This chapter gives an overview of all the components of the SOR. A description of 

the function is given and the technical details of each component is given 
 

1.1.1 Submission API 
 

The submission API is responsible for receiving a submission request for storing a 
digital master in the SOR. The SOR processing instruction also contains an option 

to send a delete or update request for the digital master. The access information 
will be controlled by the access rights (open or restricted access, for more details 
see HOPE access conditions matrix).  

 

1.1.2 Dissemination API 

 
The dissemination API is the single point of access for all requests for digital 

objects in the SOR for both human web-users and machine-to-machine 
interaction. When an http request is made to this API with the PID of the digital 

object, the response will be a jump-off page (either as HTML, XML, etc) that 
contains links to the master file and the different available derivatives for the 
digital object. The links that are shown on the pages are based on the access 

rights of the digital master. When the access is open all links will be shown. 
When access is restricted the link to the master file won‟t be shown at the jump-

off page. The PID refers to the master file that is submitted via the submission 
API. The derivatives are all linked to the master PID. The sizes and formats of 
the derivatives are stored as part of the Technical Metadata of the master file 

identified by the PID. These derivatives are accessible by providing a parameter 
extension to the PID. This parameter indicates which derivative level is 

requested. 
 

1.1.3 Administration API 

 

The administration API will consist of different components that give access to 
the different parts of the Administration platform. The rendering layer of the 
Administration platform will use the same API. For authentication a web-

services/API key will be made available via the user/role management 
component. 

 

1.1.4 IAA: Identification, Authentication, Authorization 

 
The SOR has an identification, authentication and authorization system. This is 

necessary to act on access rights rules, which apply to categories of users in 
combination with types of usage of digital objects. This feature makes the 
repository a “trusted repository”: the collections entrusted to the CPs are not 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
9 

always publicly accessible due to the privacy of personal papers. The repository 

should enforce restrictions on access in a very secure way. The IAA system will 
support both web-services key (wskey) and user/password based authentication. 

Based on the HOPE access conditions matrix and the access information from the 
Technical Metadata, the IAA system will determine if and to which formats the 
requester has access to. The IAA system will authenticate all access to the SOR 

and will be role-base. 
 

1.1.5 Ingest platform 
 

The Ingest Platform will validate the submission request from the submission 
API. The validation also includes virus checking of the digital object. After 

validation the ingestion platform adds the request on the processing queues for 
storage of the object and the technical metadata. The technical metadata will 
also contain a checksum of the digital master. The digital master is stored with 

the checksum as the identifier in the Digital Object Repository. This will ensure 
that no duplicates will be stored in the SOR and that updating the digital master 

attached to the persistent identifier is a straight forward replacement. In 
addition, the checksum is used to make sure that the item has arrived 
uncorrupted via the web. It will also be used as an integrity check when storing 

and preserving the object in the SOR. 
 

1.1.6 Administration platform 
 

The access to the administration API will be handled by the IAA component. (See 
Milestone 5.1 document2 for more details). The platform gives a status overview 

to the Content Provider (henceforth CP). The CP is able to: 1) view his collection 
of objects, i.e. how many objects are stored in the SOR and how many objects 
are ready for submission. 2) retrieve a status overview of the ongoing 

submission process and 3) usage statistics. The CP can manage and carry out 
submissions from this platform.  

 

1.1.7 Convert platform 

 
The Convert Platform handles a wide variety of formats and creates derivatives 

in most current web-standards. The convert platform interacts with the 
Processing Queue Manager to acquire transformation tasks and be able to run 
stand-alone on different nodes in the cluster. 

 

1.1.8 Delivery platform 

 
An important function of the repository is the interfacing platform responsible for 
delivering digital objects from the repository upon request (directly to end-users 

or to external systems). The delivery platform is capable of accessing derivatives 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
10 

of the master digital copy into a wide variety of formats (See Milestone 5.1 

document2 for supported formats) from the derivative storage. The jump-off 
page is generated from the Technical Metadata record of the requested PID. It 

will also need to interact with the IAA to determine if the requested object is 
available based on the requester‟s access privileges. The Delivery platform will 
be a web application server. 

 

1.1.9 Technical Metadata storage 

 
For the SOR to manage a digital object correctly some basic technical metadata 

must be supplied during the submission phase; an API key, resolver URL, naming 
authority, access rights, Local Identifier/PID, action, location, checksum, 

mimetype. This information is used by various other components of the SOR to 
manage the workflow. A CP can provide a checksum during submission or a CP 
can allow the SOR to generate a checksum. This checksum will be used for 

duplicates detection, quality assurance (whilst receiving the object and during 
storage), and as storage id in the digital object depot. This database is an 

integral part of the SOR. Because the Technical Metadata storage must be able 
to function in a cluster the information must be redundantly available. Several 
components can update a technical metadata record: administration platform, 

processing queue. 

1.1.10 Digital Object Depot 

 
The digital object depot is where all the digital masters are stored. The store will 

be replicated to provide redundant storage. The stored digital object is identified 
by the content checksum. The checksum is stored as part of the technical 

metadata record for each digital master. 
 

1.1.11 Derivative storage 

 
The derivative storage is responsible for managing the derivatives of the digital 

master files that are stored in the Digital Object Depot and are created by the 
Convert Platform. The SOR will create derivatives for both Video and Image 
digital masters. The Derivative Storage interacts with the Cluster Manager. The 

Derivative storage need to have a single interface to query for and insert 
derivatives. This multi-node setup of the storage will ensure high throughput for 

Delivery platform and Convert platform. 
 

1.1.12 Cluster manager 

 

The cluster synchronization/replication manager is responsible for distributing the 
digital object and technical metadata across the cluster. These storage solutions 
have an API that make it possible to integrate information on the state of the 

cluster in the Administration Platform API. 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
11 

1.1.13 Processing Queue Manager 

 
The Processing Queue Manager manages the work flow between the different 

components of the SOR. The benefits of an Event Driven Architecture where the 
components interact with each other through queues are that it becomes much 
easier to distribute the work in the cluster (e.g. use cloud-based solutions to 

dynamically scale up processing capacity during peak-times) and to use state-
based work-flows to prioritize tasks on the queue. 

 

1.1.14 Staging Area 

 
Since not all content providers are able to store even temporarily, large 

collections of digital objects online, a staging area with SFTP upload is provided. 
The CP uploads the objects to the staging area together with the SOR processing 
instruction. This instruction contains all the parameters to construct calls to the 

Submission API. From the Administration platform, the CP is able to trigger a run 
of the importer that reads the SOR processing instruction and turns them into 

Submission API calls. The CP can track the progress of the import via the 
Administration Platform. 
 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
12 

2. Persistent Identifier Service 
 

As the Persistent Identifier Service (PID service) is not an actual part of the SOR, 
the PID service is described separately in this chapter. 

2.1 High Level Design PID Service 
 

The HOPE Persistent Identifier Service is a separate service related to the HOPE 
system (See Milestone 5.1 document2 for more details.).  

 
The HOPE persistent Identifier Service is an implementation of a Handle3 
webserver. Through a soap protocol other web services can interact with this 

web service. At the time of writing a pilot web service is accessible via the 
following URL: http://195.169.122.195/pidservice/handle.wsdl4 

 
This URL describes the interface of the web service. An example of this interface 
is shown in Appendix A.  

 

2.2 Low Level Design PID Service 
 

Based on the design choices, described in chapter 3.3 the PID service will be 
implemented as follows: 
 

PID Server 
 

ServerName: victoradler<following number>.objectrepository.eu 
Role(s) High Level Design: HOPE Persistent Identifier Service 
Technical Specs: 

 Xen virtual server 
 1 vCPU 

 512 MB memory 
 5GB vDISK 

Responsible for: 

 Delivering Persistent Identifiers for 'HOPE' metadata and objects if the 
Content Provider cannot supply the PIDs 

Used software: 
 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 

 Shell In A Box 
 Sendmail 

 Secure Shell Deamon 
 Apache Tomcat 

 
 

                                       
3 http://www.handle.net/ 
4 http://www.w3.org/TR/wsdl 

http://195.169.122.195/pidservice/handle.wsdl


       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
13 

3. Low level design 

3.1 Infrastructure 
 

In milestone 5.1 document2 are the workflows described for the SOR. For 
release 1 of the SOR the following infrastructure is created. The infrastructure is 
presented in the following diagrams 

 
The basis is as follows: 

 

 
Figure 4 Creating and managing SOR processing instruction 

 
A CP has to create a SOR processing instruction. A CP can create one manually, 

or the CP can instruct the SOR to create one. If the CP has created the SOR 
processing instruction manually, the CP has to upload the SOR processing 
instruction to the SOR.  

On the administration panel the CP is able to manage the SOR processing 
instruction and add metadata. From here the CP can start an ingest or the CP 

can download the SOR processing instruction for editing. 
 
The creation of the SOR processing instruction is the first step in the process.  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
14 

 
Figure 5 User creating SOR processing instruction 

On the administration panel the CP selects the option to generate the SOR 

processing instruction. The administration platform calls the submission API. The 
submission API put the request on the processing message queue.  

 
When the SOR processing instruction producer receives the request to build the 
instructions, the actual SOR processing instruction will be build. 

 
 

 
Figure 6 SOR creating SOR processing instruction 

 

The builder starts the build. The builder retrieves the root folder which contains 
the files. For each file the instruction will be created and added to the SOR 

processing instruction. If all file are present, the SOR processing instruction will 
be returned. 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
15 

When a SOR processing instruction is available, the CP is able to update the SOR 

processing instruction. 
 

 
Figure 7 Updating SOR processing instruction 

From the administration panel the CP selects the update. A message to the 
submission API is sent which will ask the status of the previous SOR processing 

instruction.  
 

At ingest the SOR processing instruction should be retrieved from the SOR 
database. 
 

 
Figure 8 Get SOR processing instruction for ingest 

A get request will be sent to the submission API, which will retrieve the SOR 
processing instruction from the SOR database. The SOR processing instruction 

will be returned or a status will be returned.  
 
When the SOR processing instruction is retrieved the actual ingest can take 

place. The actual ingest can take place in release 2. The processing instruction 
will be executed accordingly, where each file will be ingested into the Depot 

 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
16 

 
Figure 8 ingest 

 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
17 

3.2 Tools and software 
 
In chapter 1.3 we can see the infrastructure for the first release of the SOR. 

These components will be developed. For some components existing tools will be 
used. In this way the infrastructure is completed. This chapter describes all these 

tools that will be used.  
 
During the project this chapter will be updated. During each release new 

components will be implemented. For each release this chapter will be updated 
with the specification and requirements for the components that will be 

implemented. 

3.2.1 Software 

 
Drupal 

 
During the first release the implementation of the administration platform will 
start. This platform will be implemented in Drupal5. Drupal is a free and open 

source content management system, which is extendable with different modules. 
Drupal provides a powerful user and role management. Adding content 

dynamically is easy and therefore Drupal is suitable to provide statistics and 
status updates of the SOR automatically.  
 

For the implementation of the administration panel the latest version of Drupal 
will be used; version 1.7.0 

3.2.2 Tools 
 

During the first release of the convert platform will be implemented. The focus is 
on converting TIFF to JPEG and resize of TIFF files (i.e. creation of derivative 

level 3, 200px.). Based on the following survey ImageMagick6 seems to be the 
most suitable tool as ImageMagick fits the requirements the best (see Milestone 
5.1 document2). This tool will be proofed during the first release.  

 
ImageMagick  

 
ImageMagick is the most used image processing program online. ImageMagick is 
used to create, edit, and compose bitmap images. It can read, convert and write 

images in 120+ formats including TIFF, JPEG, JPEG-2000 and PNG. You can use 
ImageMagick to translate, flip, mirror, rotate, scale, shear and transform images, 

adjust image colors, apply various special effects, or draw text, lines, polygons 
and ellipses. 
The functionality of ImageMagick is typically utilized from the command line or 

you can use the features from programs written in your favorite programming 
language. 

                                       
5 www.drupal.org 
6 http://www.imagemagick.org/ 

http://www.drupal.org/


       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
18 

ImageMagick is free software delivered as a ready-to-run binary distribution or 

as source code that you may freely use, copy, modify, and distribute in both 
open and proprietary applications. It is distributed under an Apache 2.0-style 

license, approved by the OSI and recommended for use by the OSSCC. 
 
For the implementation of the converter platform the latest 64 bits version 6.6.8-

6 of ImageMagick will be used. 
 

PPSS  
 
PPSS is a Bash shell script that executes commands, scripts or programs in 

parallel. It is designed to make full use of current multi-core CPUs. It will detect 
the number of available CPUs and start a separate job for each CPU core. It will 

also use hyper threading by default. PPSS can be run on multiple hosts, 
processing a single group of items, like a cluster.  
 

You can provide PPSS with a source of items (a directory with files, for example) 
and a command that must be applied to these items. PPSS will take a list of 

items as input. Items can be files within a directory or entries in a text file. PPSS 
executes a user-specified command for each item in this list. The item is supplied 
as an argument to this command. At any point in time, there are never more 

items processed in parallel as there are cores available. 
 

From version 2.0 and onward, PPSS supports distributed computing. With this 
version, it is possible to run PPSS on multiple host that each process a part of 
the same queue of items. Nodes communicate with each other through a single 

SSH server. 
 

For the implementation of the converter platform the latest version 2.85 of PPSS 
will be used 
 

 

 Remark: If updates or newer versions will be published for the above 
tools and software, these will be implemented. This document will be 

updated instantly.  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
19 

 

The low level design is based on the high level design. In this chapter all servers 
are described in detail, including the dependencies of the low level design. The 

diagrams with the overview of the low level design are shown in Appendix B. 
 

3.3 Design Choices 
 

At the start of the project we first carried out a review of existing „repository 
software‟. Although some software like Fedora-commons, E-prints and others 

where good candidates, the requirements could not be fulfilled by these software 
solutions. The reasons not to choice for this software are for example: 
 

 The software is not build up modular, one-package is used for the entire 

system/application (blackbox). 

 Some software uses clients (not browsers) 

 Not so easy scalable for performance or storage growth and future 

extension 

 The software highly depends on SQL servers, which is a RDBMS solution. 

Therefore it is less suitable for large file. 

As known in software development „object oriented architecture‟ is often be used 
to meet scalability and flexibility requirements. That‟s why we have made the 

decision to pull this idea to an „operating system level‟, so that we can meet 
more requirements at once. With the use of Virtualization technologies we can 

put almost every software component in the SOR on one server, without the 
costs of more physical servers (hardware). However we shall implement two 
physical servers for I/O consuming software like the Postgres-sql server. 

 

3.3.1 Technical solutions 

 
One of the design choices  is to put each component on its own virtual 

(web)server. In this way we get a modular infrastructure and it is easy to 
implement new components to the SOR, in such a way it is easy to change a 

component with an updated version of the component. 
 

3.3.1.1 Virtualization 

 
The keyword for meeting many of the technical expectations in the design of the 

SOR is Virtualization. Virtualization solves requirements like High-availability 
(hardware level), keeping the costs of the whole system low and the long term 

infrastructure (power and rackspace) manageable.   
In our situation we have chosen for de Citrix XEN virtualization solution. The 

reasons why: 
 It is proven technology 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
20 

 It is cost effective (available at no costs) 

 If needed you can add more features for a per machine license (not like 

other virtualizations products) 

 XEN is also available in other Linux Distributions (CentOs, Red-Hat, 

Ubuntu) 

 Citrix delivers a free management tool for all XEN servers (XenCenter) 

 Easy to implement, well documented on the Internet 

 Easy to backup whole virtual machines with the build-in tools 

Meets the requirements: High Availability, Cost effective, Scalability for 
Performance, Easy to manage, “Simple, Clean and Open design” 
 

3.3.1.2 Storage 

 
We have decided that the storage solution must be simple, cost effective and 
stable. So we have chosen for the storage independent software solution called 

MongoDB.  MongoDB provides a software storage layer on top of the hardware 
storage layer. This gives us (or Local SOR) the possibility to choose a hardware 

vendor and/or hardware solution (like nfs, iscsi san, fc san) that fits our needs. 
The configuration options within MongoDB take care of the High –Availability/ 
multiple copies/sharding/ and so on. In our case we have chosen for the two Dell 

MD3000i SAN with redundant controllers with two extra Dell MD1000 
diskcabinets. The Dell MD3000i SAN is a cost affordable product that has proven 

to be stable and has good support options by the hardware vendor. 
 
Meets the requirements: Save (secure) storage Scalable for > 500Tbytes, 

Scalability for Performance (down- or up scaling), High availability, Cost-
effective, Low Maintenance 

 

3.3.1.3 Network 

 
Core Switch 

 
To connect all the network components (network interface cards, firewalls, 
routers) together we have decided to put a redundant switch solution from Dell 

as core-switch. Dell delivers with the Power-Connect 6224 series a cost effective, 
high availability solution for the SOR. The switches will use VLAN‟s to separate 

the different kind of networks, like ISCSI, DMZ, WAN, Server LAN, Dev LAN.  
 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
21 

Switch 

 
To connect the network components from the Datacenter Vancis7 to the 

Datacenter IISG, we have decided to use one Cisco 2960 switch on each side. 
We didn‟t choose Dell switches, because our network provider only allows us the 
use of VLAN Trunking if Cisco is used. If we take a look at the LLD-specified (See 

Appendix B) this looks like a single point of failure, but less is true. The solution 
on the Datacenter Vancis side is all redundant to the world, but the switch to the 

remote copy in the Datacenter-IISG is not. If a switch failure will exist between 
the datacenters, and it is resolved, the software will take care of copying the new 
information/data to the remote Datacenter, in our case from Datacenter Vancis 

to Datacenter IISG (remote copy). Although the risk is very low there is a 
possibility to extend the number of switches. 

 
Firewalls  
 

To add security to the whole SOR system, we have decided to use the redundant 
firewall solution from Fortinet. These firewalls are provided by the IISG and are 

well featured. One of the interesting features is to add more Virtual Firewalls, 
which gives the ability to delegate a firewall solution for a particular network (like 
HOPE). Also the use of multiple WAN ports is supported which gives us scalability 

in download and upload bandwidth. 
 

Internet 
 
The redundant Internet connectivity is provided by the KNAW and has a 

bandwidth of 1Gb/s full duplex. The KNAW is connected to SURFnet with a 
redundant connection of 1 Gb/s. 

In April 2011 the KNAW connectivity to SURFnet will be upgraded to 10Gb/s but 
limited to 3Gb/s. The Internet connectivity between the firewalls of the SOR and 
the KNAW will be upgraded to at least 2Gb/s. 

 
Meets the requirements: Scalability for Performance (down- or up scaling), High 

availability, Cost-effective, Low Maintenance, Easy to manage  
 

3.3.1.4 Software 
 

Operating system 
 
Because the aggregator already uses Ubuntu Linux and to keep the whole „HOPE 

system‟ simple, clean and open, we have decided to use Ubuntu Server Linux 
LTS 10.04.x 64 bits in the SOR. Ubuntu is a widely used Linux distribution with a 

big software repository and if needed you can add/buy additional support from 
Canonical (the company behind Ubuntu). Ubuntu Server Linux Long-term support 

                                       
7 See appendix C for an explanation of KNAW, SURFnet, Vancis and IISG 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
22 

(LTS) releases are especially designed for stable deployment scenarios and are 

supported for five years. 
The only commercial (academic licensed) software in the SOR are two Microsoft 

Windows 2008 R2 standard servers. These are necessary for XenCenter to 
distributed, roles and users into the XenServers. In a local SOR this is not really 
necessary, because there are less system administrators, but in our case we 

need to. 
 

3.3.1.5 Converter 
 

The making of derivatives from „master files‟ is a CPU consuming task. We have 
decided to use a „blade center‟ with ten „dual quad cores CPU‟ blade servers 

(provided by the IISG). These servers will be installed with Citrix XenServer, this 
gives a little bit of overhead but will be compensated by easy management, 
resource monitoring and high-availability.  

The blade servers will be configured in a nine production plus one spare 
configuration for extra hardware High-Availability. On top of the XenServers we 

are running two groups of virtual converter servers, one group for the images 
and one group for the movies/sound. We are using always the same amount of 
virtual converter servers which gives an easy configuration model. On the fly 

scaling for faster/slower processing of each group of files is possible to place the 
right amount of virtual converter servers on less or more blade servers.    

Another technique that will be used is parallel processing software, named PPSS 
(Parallel Processing Shell Script). This technique gives the ability to deliver fast 
on-demand services when this is requested. This will also be used to handle the 

bulk of „master files‟ that will put into the SOR in initial loading. 
 

Meets the requirements: Derivatives, High-Availability, Scalability for 
Performance (down- or up scaling), Simple, clean and open design, Object 
oriented architecture. 

 

3.3.1.6 Management, maintenance and monitoring 

 
To keep everything manageable and maintainable we implement some Open-

Source/Free tools into the SOR, they are: 
 

 XenCenter for managing all virtual servers from one Interface. It has the 

ability to make snapshots (backup in time) from virtual servers, make 

backups off the whole virtual server, move virtual machines from one 

XenServer to another XenServer (patching without downtime), monitors 

the virtual server on CPU/Memory/Disk space. 

 Webmin for managing all virtual servers with a web interface. It has the 

ability to send „linux commands‟, managing local users/groups, monitoring 

software, install software and much more from one single point. 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
23 

 Zenoss for monitoring all the servers with snmp from one web interface 

dashboard.  

 Puppet for patching or change configuration files on all virtual servers 

from one single point. Makes management and easy roll-out for 

installation possible. 

Meets the requirements: Low Maintenance, Cost-effective, Easy to manage 

 
 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
24 

3.4 Implementation 
 
Based on the design choices the following implementation is designed. This 

chapter describes this implementation. Appendix B shows a schematic overview 
of this implementation. 

 

3.4.1 API Servers 

 
API Server 

 
ServerName: hugohaase<following number>.objectrepository.eu 
Role(s) High Level Design: Submission API, Dissemination API, Administration 

API, Delivery Platform, Ingest Platform 
Technical Specs: 

 Xen virtual server 
 vCPU 
 1024 MB memory 

 5GB vDISK 
Responsible for: 

 Delivering APIs for internal and external services 
Used software: 

 Ubuntu LTS 10.04.x 64bit 

 Webmin administrator interface 
 Shell In A Box 

 Sendmail 
 Secure Shell Deamon 
 Apache Tomcat 

 
Proxy Server 

 
ServerName: leontrosky<following number>.objectrepository.eu 
Role(s) High Level Design: Dissemination API, Jump-Off page, Administration API 

Technical Specs: 
 Xen virtual server 

 1 vCPU 
 512 MB memory 

 5GB vDISK 
Responsible for: 

 Handle all the (secure) webtraffic for the backend servers; 

 Jump-off pages 
 Administration interface of the SOR 

 IALHI portal 
 Logging visits per virtual hosts 
 Deliver een webbased overview of the visits per virtual hosts 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
25 

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Apache webserver 

 AwStats 
 Webmin administrator interface 
 Shell In A Box 

 Sendmail 
 Secure Shell Deamon 

 Heartbeat (fail over) 
 

3.4.2 IAA: Identification, Authentication, Authorization servers 

 

Directory Server 
 
ServerName: robertgrimm<following number>.objectrepository.eu 

Role(s) High Level Design: Identification, Authorization, Authentication (IAA), 
User/role manager, HOPE access conditions Matrix 

Technical Specs: 
 Xen virtual server 
 1 vCPU 

 512 MB memory 
 5 GB vDISK 

Responsible for: 
 IAA, user roles and user authentication for servers 

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Apache webserver 

 Webmin administrator interface 
 Shell In A Box 
 Sendmail 

 Secure Shell Deamon 
 OpenLdap 

 PHPldapAdmin 
 

3.4.3 Platform servers 

 

Web Server 
 
ServerName: karlrenner<following number>.objectrepository.eu 

Role(s) High Level Design: Jump-Off page, Administration Interface, Helpdesk 
(future), Tracking system (future) 

Technical Specs: 
 Xen virtual server 
 1 vCPU 

 512 MB memory 
 5GB vDISK 



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
26 

Responsible for: 

 Delivering webpages for the  
 Jump-off pages 

 Administration interface of the SOR 
 IALHI portal 

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Apache webserver 

 Webmin administrator interface 
 Shell In A Box 
 Sendmail 

 Secure Shell Deamon 
 ProFtp 

 Drupal 7 
 PHP 

 

Converter manager Server 
 

ServerName: augustbebel<following number>.objectrepository.eu 
Role(s) High Level Design: Convert Platform 
Technical Specs: 

 Xen virtual server 
 vCPU 

 1 GB memory 
 5GB vDISK 

Responsible for: 

 Distrubuting the derivative converting job to multiple Converter Servers 
Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 
 Shell In A Box 

 Sendmail 
 Secure Shell Deamon 

 Parallel Processing Shell Script (PPSS) 
 

Converter Server 
 
ServerName: augustbebel<following number>.objectrepository.eu 

Role(s) High Level Design: Convert Platform 
Technical Specs: 

 Xen virtual server 
 8 vCPU 
 4 MB memory 

 5GB vDISK 
Responsible for: 

 Converting Digital objects (Masters) to derivatives 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
27 

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 

 Shell In A Box 
 Sendmail 
 Secure Shell Deamon 

 Parallel Processing Shell Script (PPSS) 
 

Processing Message Broker Server 
 
ServerName: julesguesde<following number>.objectrepository.eu 

Role(s) High Level Design: Processing Queue Manager 
Technical Specs: 

 Xen virtual server 
 vCPU 
 1024 MB memory 

 5GB vDISK 
Responsible for: 

 Managing Converter Processing from Staging Area to Derivative 
Storage  

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 

 Shell In A Box 
 Sendmail 
 Secure Shell Deamon 

 Apache Tomcat 
 

3.4.4 Storage 
 

Database / NFS Server 
 

ServerName: rosaluxemburg<following number>.objectrepository.eu 
Role(s) High Level Design: Technical Metadata, Delivery platform, Administration 
platform 

Technical Specs: 
 Server 

 1 QC CPU 
 8GB memory 
 250GB DISK RAID 1 

Responsible for: 
 technical metadata (DB), webdata (DB), fileservice 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
28 

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 

 Shell In A Box 
 Sendmail 
 Secure Shell Deamon 

 Postgres SQL 
 NFS 

 DRbd 
 Heartbeat 

 

MongoDB Server 
 

ServerName: clarazetkin<following number>.objectrepository.eu 
Role(s) High Level Design: Digital Object Depot, Derivative Storage 
Technical Specs: 

 Xen virtual server 
 vCPU 

 2048 MB memory 
 5GB vDISK 
 x 3 x 20TB ISCSI DISKS RAID6 

Responsible for: 
 Delivering APIs for internal and external services 

Used software: 
 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 

 Shell In A Box 
 Sendmail 

 Secure Shell Deamon 
Remark: MongoDB server must run in a cluster (Replicaset) for fail-over. 
 

 
SAN 

 
ServerName: vlademimrlenin<following number>.objectrepository.eu 

Role(s) High Level Design: Object repository, Derivative storage 
Technical Specs: 

 ISCSI SAN device with Dual Raid controllers 

 Multiple CPU's 
 Multiple cabinets 

 x 3 x 22TB DISKSPACE (Netto) 
Responsible for: 

 Storing all virtuall machines 

 Storing Derivatives from objects (masters) 
 Storing objects (masters) 

Used software: 
 Dell MD storage manager 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
29 

3.4.5 Staging Area 

 
Staging Area Server 

 
ServerName: victoradler<following number>.objectrepository.eu 
Role(s) High Level Design: Staging Area, Upload area, Importer 

Technical Specs: 
 Xen virtual server 

 1 vCPU 
 1024 MB memory 
 5GB vDISK 

 7 TB ISCSI DISKS RAID6 
Responsible for: 

 Temporary store the digital object before submission 
 Deliver SFTP service 

Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 

 Shell In A Box 
 Sendmail 
 Secure Shell Deamon 

 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
30 

3.5 Low level design dependencies 
 
For the servers described in the previous chapter to operate there are some 

technical dependencies. These dependencies are described here: 
 

3.5.1 Virtual Servers 
 

3.5.1.1 Applications Environment 
 

Citrix XenServer 
 

ServerName: antonpannekoek<following number>.objectrepository.eu 
Role(s) High Level Design: Not named but is nessecary 

Technical Specs: 
 Server 
 1 QC CPU 

 24GB memory 
 146GB DISK RAID 1 

 x 2TB ISCSI DISK RAID1 
Responsible for: 

 Hosting all virtual servers 

Used software: 
 Citrix XenServer 5.6.xxx 

 
XenCenter Server 
 

ServerName: karlmarx<following number>.objectrepository.eu 
Role(s) High Level Design: not named but is necessary for managing 

Virtualization Environment 
Technical Specs: 

 Xen virtual server 

 1 vCPU 
 1500 MB memory 

 40 GB vDISK 
Responsible for: 

 User authentication for Xen Servers (hosts), active directory, 

monitoring 
Used software: 

 Windows 2008 Standard 64bit 
 RDP 
 XenCenter 

 Putty 
 Spiceworks (management tool) 

 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
31 

Name Server 

 
ServerName: pavelaxelrod<following number>.objectrepository.eu 

Role(s) High Level Design: not named but is necessary 
Technical Specs: 

 Xen virtual server 

 1 vCPU 
 256 MB memory 

 5GB vDISK 
Responsible for: 

 IPv4 and IPv6 Name resolution services 

Used software: 
 Ubuntu LTS 10.04.x 64bit 

 Webmin administrator interface 
 Shell In A Box 
 Sendmail 

 Secure Shell Deamon 

 Bind9 nameserver 
 

Mailrelay Server 
 

ServerName: julliusmartov<following number>.objectrepository.eu 
Role(s) High Level Design: not named but is necessary 
Technical Specs: 

 Xen virtual server 
 1 vCPU 

 384 MB memory 
 5GB vDISK 

Responsible for: 

 All e-mail traffic which are generated by the machines for 
maintenance/error reports and email generated by the Administration 

Interface 
Used software: 

 Ubuntu LTS 10.04.x 64bit 

 Webmin administrator interface 
 Shell In A Box 

 Sendmail 
 Secure Shell Deamon 
 MailScanner 

 Spammassassin 
 Procmail 

 Baruwa webfrontend 
 Apache2 

 MySql 
 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
32 

Management,Backup,Monitoring Server 

 
ServerName: filippoturati<following number>.objectrepository.eu 

Role(s) High Level Design: not named but is necessary for server monitoring 
Technical Specs: 

 Xen virtual server 

 vCPU 
 1024 MB memory 

 5GB vDISK + 50GB vDISK 
Responsible for: 

 Delivering a monitoring platform (logging, error reporting, other IT-

related reporting), patch management 
Used software: 

 Ubuntu LTS 10.04.x 64bit 
 Webmin administrator interface 
 Shell In A Box 

 Sendmail 
 Secure Shell Deamon 

 ZenOss (management tool) 
 Bacula (Backup) 
 Puppet (Linux patch management) 

 

3.5.2 Converter Environment  

 
Citrix XenServer 

 
ServerName: antonpannekoek<following number>.objectrepository.eu 

Role(s) High Level Design: Not named but is necessary 
Technical Specs: 

 Server 

 QC CPU 
 8GB memory 

 72GB DISK RAID 1 
Responsible for: 

 Hosting all virtual Converter servers 

Used software: 
 Citrix XenServer 5.6.xxx 

 
  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
33 

Conclusion 
 

In this document we have described the high and low level design of the SOR. 
The input for this design came from: 

 The High Level Design WP2 (T2.1) 
 Gathered requirements from the Content Providers (CP) in the 

“HOPE consortium” 
 Milestone document M5.1 – Repository workflow and Requirements 

specification 
All components of the SOR have been specified including the low level design is 
specified.  
This document will evolve during the following releases of the SOR and PID 

Service. Some of the technology choices can change. When the requirements, 
technology choices or specifications change, this document will be updated.  

 

  



       
 

HOPE is co-funded by the European Union through the ICT Policy Support Programme.  
34 

Appendix A - Example HOPE Persistent Identifier Web 
service interface 
 
See document: Deliverable D5.1 Supplement – Repository Infrastructure and 

Detailed Design Appendixes 

Appendix B – Low Level Design 
 
See document: Deliverable D5.1 Supplement – Repository Infrastructure and 

Detailed Design Appendixes 

Appendix C – Organizations providing parts of the 
infrastructure of the SOR 
 
See document: Deliverable D5.1 Supplement – Repository Infrastructure and 

Detailed Design Appendixes 

Appendix D – Technical Glossary SOR 
 
See document: Deliverable D5.1 Supplement – Repository Infrastructure and 

Detailed Design Appendixes 
 


